IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v119y2024i545p650-663.html
   My bibliography  Save this article

Multi-Task Learning with High-Dimensional Noisy Images

Author

Listed:
  • Xin Ma
  • Suprateek Kundu

Abstract

Recent medical imaging studies have given rise to distinct but inter-related datasets corresponding to multiple experimental tasks or longitudinal visits. Standard scalar-on-image regression models that fit each dataset separately are not equipped to leverage information across inter-related images, and existing multi-task learning approaches are compromised by the inability to account for the noise that is often observed in images. We propose a novel joint scalar-on-image regression framework involving wavelet-based image representations with grouped penalties that are designed to pool information across inter-related images for joint learning, and which explicitly accounts for noise in high-dimensional images via a projection-based approach. In the presence of nonconvexity arising due to noisy images, we derive nonasymptotic error bounds under nonconvex as well as convex grouped penalties, even when the number of voxels increases exponentially with sample size. A projected gradient descent algorithm is used for computation, which is shown to approximate the optimal solution via well-defined nonasymptotic optimization error bounds under noisy images. Extensive simulations and application to a motivating longitudinal Alzheimer’s disease study illustrate significantly improved predictive ability and greater power to detect true signals, that are simply missed by existing methods without noise correction due to the attenuation to null phenomenon. Supplementary materials for this article are available online.

Suggested Citation

  • Xin Ma & Suprateek Kundu, 2024. "Multi-Task Learning with High-Dimensional Noisy Images," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 650-663, January.
  • Handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:650-663
    DOI: 10.1080/01621459.2022.2140052
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2022.2140052
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2022.2140052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:650-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.