IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i540p2163-2181.html
   My bibliography  Save this article

Generalized Bayes Quantification Learning under Dataset Shift

Author

Listed:
  • Jacob Fiksel
  • Abhirup Datta
  • Agbessi Amouzou
  • Scott Zeger

Abstract

Quantification learning is the task of prevalence estimation for a test population using predictions from a classifier trained on a different population. Quantification methods assume that the sensitivities and specificities of the classifier are either perfect or transportable from the training to the test population. These assumptions are inappropriate in the presence of dataset shift, when the misclassification rates in the training population are not representative of those for the test population. Quantification under dataset shift has been addressed only for single-class (categorical) predictions and assuming perfect knowledge of the true labels on a small subset of the test population. We propose generalized Bayes quantification learning (GBQL) that uses the entire compositional predictions from probabilistic classifiers and allows for uncertainty in true class labels for the limited labeled test data. Instead of positing a full model, we use a model-free Bayesian estimating equation approach to compositional data using Kullback–Leibler loss-functions based only on a first-moment assumption. The idea will be useful in Bayesian compositional data analysis in general as it is robust to different generating mechanisms for compositional data and allows 0’s and 1’s in the compositional outputs thereby including categorical outputs as a special case. We show how our method yields existing quantification approaches as special cases. Extension to an ensemble GBQL that uses predictions from multiple classifiers yielding inference robust to inclusion of a poor classifier is discussed. We outline a fast and efficient Gibbs sampler using a rounding and coarsening approximation to the loss functions. We establish posterior consistency, asymptotic normality and valid coverage of interval estimates from GBQL, which to our knowledge are the first theoretical results for a quantification approach in the presence of local labeled data. We also establish finite sample posterior concentration rate. Empirical performance of GBQL is demonstrated through simulations and analysis of real data with evident dataset shift. Supplementary materials for this article are available online.

Suggested Citation

  • Jacob Fiksel & Abhirup Datta & Agbessi Amouzou & Scott Zeger, 2022. "Generalized Bayes Quantification Learning under Dataset Shift," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 2163-2181, October.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2163-2181
    DOI: 10.1080/01621459.2021.1909599
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1909599
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1909599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:2163-2181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.