IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i540p1695-1710.html
   My bibliography  Save this article

Neuronized Priors for Bayesian Sparse Linear Regression

Author

Listed:
  • Minsuk Shin
  • Jun S. Liu

Abstract

Although Bayesian variable selection methods have been intensively studied, their routine use in practice has not caught up with their non-Bayesian counterparts such as Lasso, likely due to difficulties in both computations and flexibilities of prior choices. To ease these challenges, we propose the neuronized priors to unify and extend some popular shrinkage priors, such as Laplace, Cauchy, horseshoe, and spike-and-slab priors. A neuronized prior can be written as the product of a Gaussian weight variable and a scale variable transformed from Gaussian via an activation function. Compared with classic spike-and-slab priors, the neuronized priors achieve the same explicit variable selection without employing any latent indicator variables, which results in both more efficient and flexible posterior sampling and more effective posterior modal estimation. Theoretically, we provide specific conditions on the neuronized formulation to achieve the optimal posterior contraction rate, and show that a broadly applicable MCMC algorithm achieves an exponentially fast convergence rate under the neuronized formulation. We also examine various simulated and real data examples and demonstrate that using the neuronization representation is computationally more or comparably efficient than its standard counterpart in all well-known cases. An R package NPrior is provided for using neuronized priors in Bayesian linear regression.

Suggested Citation

  • Minsuk Shin & Jun S. Liu, 2022. "Neuronized Priors for Bayesian Sparse Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1695-1710, October.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1695-1710
    DOI: 10.1080/01621459.2021.1876710
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1876710
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1876710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:540:p:1695-1710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.