IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i534p935-954.html
   My bibliography  Save this article

Structure and Sensitivity in Differential Privacy: Comparing K-Norm Mechanisms

Author

Listed:
  • Jordan Awan
  • Aleksandra Slavković

Abstract

Differential privacy (DP) provides a framework for provable privacy protection against arbitrary adversaries, while allowing the release of summary statistics and synthetic data. We address the problem of releasing a noisy real-valued statistic vector T, a function of sensitive data under DP, via the class of K-norm mechanisms with the goal of minimizing the noise added to achieve privacy. First, we introduce the sensitivity space of T, which extends the concepts of sensitivity polytope and sensitivity hull to the setting of arbitrary statistics T. We then propose a framework consisting of three methods for comparing the K-norm mechanisms: (1) a multivariate extension of stochastic dominance, (2) the entropy of the mechanism, and (3) the conditional variance given a direction, to identify the optimal K-norm mechanism. In all of these criteria, the optimal K-norm mechanism is generated by the convex hull of the sensitivity space. Using our methodology, we extend the objective perturbation and functional mechanisms and apply these tools to logistic and linear regression, allowing for private releases of statistical results. Via simulations and an application to a housing price dataset, we demonstrate that our proposed methodology offers a substantial improvement in utility for the same level of risk.

Suggested Citation

  • Jordan Awan & Aleksandra Slavković, 2021. "Structure and Sensitivity in Differential Privacy: Comparing K-Norm Mechanisms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 935-954, April.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:935-954
    DOI: 10.1080/01621459.2020.1773831
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1773831
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1773831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vilhuber, Lars, 2023. "Reproducibility and transparency versus privacy and confidentiality: Reflections from a data editor," Journal of Econometrics, Elsevier, vol. 235(2), pages 2285-2294.
    2. Ryan Cumings-Menon, 2022. "Differentially Private Estimation via Statistical Depth," Papers 2207.12602, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:935-954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.