IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i529p380-392.html
   My bibliography  Save this article

Matched Learning for Optimizing Individualized Treatment Strategies Using Electronic Health Records

Author

Listed:
  • Peng Wu
  • Donglin Zeng
  • Yuanjia Wang

Abstract

Current guidelines for treatment decision making largely rely on data from randomized controlled trials (RCTs) studying average treatment effects. They may be inadequate to make individualized treatment decisions in real-world settings. Large-scale electronic health records (EHR) provide opportunities to fulfill the goals of personalized medicine and learn individualized treatment rules (ITRs) depending on patient-specific characteristics from real-world patient data. In this work, we tackle challenges with EHRs and propose a machine learning approach based on matching (M-learning) to estimate optimal ITRs from EHRs. This new learning method performs matching instead of inverse probability weighting as commonly used in many existing methods for estimating ITRs to more accurately assess individuals’ treatment responses to alternative treatments and alleviate confounding. Matching-based value functions are proposed to compare matched pairs under a unified framework, where various types of outcomes for measuring treatment response (including continuous, ordinal, and discrete outcomes) can easily be accommodated. We establish the Fisher consistency and convergence rate of M-learning. Through extensive simulation studies, we show that M-learning outperforms existing methods when propensity scores are misspecified or when unmeasured confounders are present in certain scenarios. Lastly, we apply M-learning to estimate optimal personalized second-line treatments for type 2 diabetes patients to achieve better glycemic control or reduce major complications using EHRs from New York Presbyterian Hospital. Supplementary materials for this article are available online.

Suggested Citation

  • Peng Wu & Donglin Zeng & Yuanjia Wang, 2020. "Matched Learning for Optimizing Individualized Treatment Strategies Using Electronic Health Records," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 380-392, January.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:380-392
    DOI: 10.1080/01621459.2018.1549050
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1549050
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1549050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Wu & Donglin Zeng & Haoda Fu & Yuanjia Wang, 2020. "On using electronic health records to improve optimal treatment rules in randomized trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1075-1086, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:380-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.