IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i528p1800-1814.html
   My bibliography  Save this article

Uncertainty Quantification for Computer Models With Spatial Output Using Calibration-Optimal Bases

Author

Listed:
  • James M. Salter
  • Daniel B. Williamson
  • John Scinocca
  • Viatcheslav Kharin

Abstract

The calibration of complex computer codes using uncertainty quantification (UQ) methods is a rich area of statistical methodological development. When applying these techniques to simulators with spatial output, it is now standard to use principal component decomposition to reduce the dimensions of the outputs in order to allow Gaussian process emulators to predict the output for calibration. We introduce the “terminal case,” in which the model cannot reproduce observations to within model discrepancy, and for which standard calibration methods in UQ fail to give sensible results. We show that even when there is no such issue with the model, the standard decomposition on the outputs can and usually does lead to a terminal case analysis. We present a simple test to allow a practitioner to establish whether their experiment will result in a terminal case analysis, and a methodology for defining calibration-optimal bases that avoid this whenever it is not inevitable. We present the optimal rotation algorithm for doing this, and demonstrate its efficacy for an idealized example for which the usual principal component methods fail. We apply these ideas to the CanAM4 model to demonstrate the terminal case issue arising for climate models. We discuss climate model tuning and the estimation of model discrepancy within this context, and show how the optimal rotation algorithm can be used in developing practical climate model tuning tools. Supplementary materials for this article are available online.

Suggested Citation

  • James M. Salter & Daniel B. Williamson & John Scinocca & Viatcheslav Kharin, 2019. "Uncertainty Quantification for Computer Models With Spatial Output Using Calibration-Optimal Bases," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1800-1814, October.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1800-1814
    DOI: 10.1080/01621459.2018.1514306
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1514306
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1514306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Giri Gopalan & Christopher K. Wikle, 2022. "A Higher-Order Singular Value Decomposition Tensor Emulator for Spatiotemporal Simulators," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 22-45, March.
    3. Giri Gopalan & Birgir Hrafnkelsson & Christopher K. Wikle & Håvard Rue & Guðfinna Aðalgeirsdóttir & Alexander H. Jarosch & Finnur Pálsson, 2019. "A Hierarchical Spatiotemporal Statistical Model Motivated by Glaciology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 669-692, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1800-1814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.