IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i527p1404-1417.html
   My bibliography  Save this article

Proper Inference for Value Function in High-Dimensional Q-Learning for Dynamic Treatment Regimes

Author

Listed:
  • Wensheng Zhu
  • Donglin Zeng
  • Rui Song

Abstract

Dynamic treatment regimes are a set of decision rules and each treatment decision is tailored over time according to patients’ responses to previous treatments as well as covariate history. There is a growing interest in development of correct statistical inference for optimal dynamic treatment regimes to handle the challenges of nonregularity problems in the presence of nonrespondents who have zero-treatment effects, especially when the dimension of the tailoring variables is high. In this article, we propose a high-dimensional Q-learning (HQ-learning) to facilitate the inference of optimal values and parameters. The proposed method allows us to simultaneously estimate the optimal dynamic treatment regimes and select the important variables that truly contribute to the individual reward. At the same time, hard thresholding is introduced in the method to eliminate the effects of the nonrespondents. The asymptotic properties for the parameter estimators as well as the estimated optimal value function are then established by adjusting the bias due to thresholding. Both simulation studies and real data analysis demonstrate satisfactory performance for obtaining the proper inference for the value function for the optimal dynamic treatment regimes. Supplementary materials for this article are available online.

Suggested Citation

  • Wensheng Zhu & Donglin Zeng & Rui Song, 2019. "Proper Inference for Value Function in High-Dimensional Q-Learning for Dynamic Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1404-1417, July.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1404-1417
    DOI: 10.1080/01621459.2018.1506341
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1506341
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1506341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    2. Jiacheng Wu & Nina Galanter & Susan M. Shortreed & Erica E.M. Moodie, 2022. "Ranking tailoring variables for constructing individualized treatment rules: An application to schizophrenia," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 309-330, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1404-1417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.