IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i526p928-937.html
   My bibliography  Save this article

A Generic Sure Independence Screening Procedure

Author

Listed:
  • Wenliang Pan
  • Xueqin Wang
  • Weinan Xiao
  • Hongtu Zhu

Abstract

Extracting important features from ultra-high dimensional data is one of the primary tasks in statistical learning, information theory, precision medicine, and biological discovery. Many of the sure independent screening methods developed to meet these needs are suitable for special models under some assumptions. With the availability of more data types and possible models, a model-free generic screening procedure with fewer and less restrictive assumptions is desirable. In this article, we propose a generic nonparametric sure independence screening procedure, called BCor-SIS, on the basis of a recently developed universal dependence measure: Ball correlation. We show that the proposed procedure has strong screening consistency even when the dimensionality is an exponential order of the sample size without imposing sub-exponential moment assumptions on the data. We investigate the flexibility of this procedure by considering three commonly encountered challenging settings in biological discovery or precision medicine: iterative BCor-SIS, interaction pursuit, and survival outcomes. We use simulation studies and real data analyses to illustrate the versatility and practicability of our BCor-SIS method. Supplementary materials for this article are available online.

Suggested Citation

  • Wenliang Pan & Xueqin Wang & Weinan Xiao & Hongtu Zhu, 2019. "A Generic Sure Independence Screening Procedure," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 928-937, April.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:928-937
    DOI: 10.1080/01621459.2018.1462709
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1462709
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1462709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Lu & Dan Wang & Qinqin Hu, 2022. "Interaction screening via canonical correlation," Computational Statistics, Springer, vol. 37(5), pages 2637-2670, November.
    2. Yanhang Zhang & Junxian Zhu & Jin Zhu & Xueqin Wang, 2023. "A Splicing Approach to Best Subset of Groups Selection," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 104-119, January.
    3. Yang, Yihe & Dai, Hongsheng & Pan, Jianxin, 2023. "Block-diagonal precision matrix regularization for ultra-high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    4. Sven Serneels, 2019. "Projection pursuit based generalized betas accounting for higher order co-moment effects in financial market analysis," Papers 1908.00141, arXiv.org.
    5. Dominic Edelmann & Thomas Welchowski & Axel Benner, 2022. "A consistent version of distance covariance for right‐censored survival data and its application in hypothesis testing," Biometrics, The International Biometric Society, vol. 78(3), pages 867-879, September.
    6. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    7. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
    8. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    9. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    10. repec:hal:journl:hal-04675599 is not listed on IDEAS
    11. Xuewei Cheng & Gang Li & Hong Wang, 2024. "The concordance filter: an adaptive model-free feature screening procedure," Computational Statistics, Springer, vol. 39(5), pages 2413-2436, July.
    12. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.
    13. Randall Reese & Guifang Fu & Geran Zhao & Xiaotian Dai & Xiaotian Li & Kenneth Chiu, 2022. "Epistasis Detection via the Joint Cumulant," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 514-532, December.
    14. Jing Zhang & Yanyan Liu & Hengjian Cui, 2021. "Model-free feature screening via distance correlation for ultrahigh dimensional survival data," Statistical Papers, Springer, vol. 62(6), pages 2711-2738, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:928-937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.