IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1284-1295.html
   My bibliography  Save this article

Identifying Latent Structures in Restricted Latent Class Models

Author

Listed:
  • Gongjun Xu
  • Zhuoran Shang

Abstract

This article focuses on a family of restricted latent structure models with wide applications in psychological and educational assessment, where the model parameters are restricted via a latent structure matrix to reflect prespecified assumptions on the latent attributes. Such a latent matrix is often provided by experts and assumed to be correct upon construction, yet it may be subjective and misspecified. Recognizing this problem, researchers have been developing methods to estimate the matrix from data. However, the fundamental issue of the identifiability of the latent structure matrix has not been addressed until now. The first goal of this article is to establish identifiability conditions that ensure the estimability of the structure matrix. With the theoretical development, the second part of the article proposes a likelihood-based method to estimate the latent structure from the data. Simulation studies show that the proposed method outperforms the existing approaches. We further illustrate the method through a dataset in educational assessment. Supplementary materials for this article are available online.

Suggested Citation

  • Gongjun Xu & Zhuoran Shang, 2018. "Identifying Latent Structures in Restricted Latent Class Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1284-1295, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1284-1295
    DOI: 10.1080/01621459.2017.1340889
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1340889
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1340889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1284-1295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.