IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i517p342-350.html
   My bibliography  Save this article

Promoting Similarity of Sparsity Structures in Integrative Analysis With Penalization

Author

Listed:
  • Yuan Huang
  • Qingzhao Zhang
  • Sanguo Zhang
  • Jian Huang
  • Shuangge Ma

Abstract

For data with high-dimensional covariates but small sample sizes, the analysis of single datasets often generates unsatisfactory results. The integrative analysis of multiple independent datasets provides an effective way of pooling information and outperforms single-dataset and several alternative multi-datasets methods. Under many scenarios, multiple datasets are expected to share common important covariates, that is, the corresponding models have similarity in their sparsity structures. However, the existing methods do not have a mechanism to promote the similarity in sparsity structures in integrative analysis. In this study, we consider penalized variable selection and estimation in integrative analysis. We develop an L0-penalty-based method, which explicitly promotes the similarity in sparsity structures. Computationally it is realized using a coordinate descent algorithm. Theoretically it has the selection and estimation consistency properties. Under a wide spectrum of simulation scenarios, it has identification and estimation performance comparable to or better than the alternatives. In the analysis of three lung cancer datasets with gene expression measurements, it identifies genes with sound biological implications and satisfactory prediction performance. Supplementary materials for this article are available online.

Suggested Citation

  • Yuan Huang & Qingzhao Zhang & Sanguo Zhang & Jian Huang & Shuangge Ma, 2017. "Promoting Similarity of Sparsity Structures in Integrative Analysis With Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 342-350, January.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:342-350
    DOI: 10.1080/01621459.2016.1139497
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1139497
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1139497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron J. Molstad & Rohit K. Patra, 2023. "Dimension reduction for integrative survival analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1610-1623, September.
    2. Liu, Mengque & Zhang, Qingzhao & Fang, Kuangnan & Ma, Shuangge, 2020. "Structured analysis of the high-dimensional FMR model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:342-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.