IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i517p300-313.html
   My bibliography  Save this article

Augmented Particle Filters

Author

Listed:
  • Jonghyun Yun
  • Fan Yang
  • Yuguo Chen

Abstract

Particle filters have been widely used for online filtering problems in state–space models (SSMs). The current available proposal distributions depend either only on the state dynamics, or only on the observation, or on both sources of information but are not available for general SSMs. In this article, we develop a new particle filtering algorithm, called the augmented particle filter (APF), for online filtering problems in SSMs. The APF combines two sets of particles from the observation equation and the state equation, and the state space is augmented to facilitate the weight computation. Theoretical justification of the APF is provided, and the connection between the APF and the optimal particle filter (OPF) in some special SSMs is investigated. The APF shares similar properties as the OPF, but the APF can be applied to a much wider range of models than the OPF. Simulation studies show that the APF performs similarly to or better than the OPF when the OPF is available, and the APF can perform better than other filtering algorithms in the literature when the OPF is not available.

Suggested Citation

  • Jonghyun Yun & Fan Yang & Yuguo Chen, 2017. "Augmented Particle Filters," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 300-313, January.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:300-313
    DOI: 10.1080/01621459.2015.1135803
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1135803
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1135803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rutger Jan Lange, 2020. "Bellman filtering for state-space models," Tinbergen Institute Discussion Papers 20-052/III, Tinbergen Institute, revised 19 May 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:300-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.