IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i509p393-404.html
   My bibliography  Save this article

Risk Classification With an Adaptive Naive Bayes Kernel Machine Model

Author

Listed:
  • Jessica Minnier
  • Ming Yuan
  • Jun S. Liu
  • Tianxi Cai

Abstract

Genetic studies of complex traits have uncovered only a small number of risk markers explaining a small fraction of heritability and adding little improvement to disease risk prediction. Standard single marker methods may lack power in selecting informative markers or estimating effects. Most existing methods also typically do not account for nonlinearity. Identifying markers with weak signals and estimating their joint effects among many noninformative markers remains challenging. One potential approach is to group markers based on biological knowledge such as gene structure. If markers in a group tend to have similar effects, proper usage of the group structure could improve power and efficiency in estimation. We propose a two-stage method relating markers to disease risk by taking advantage of known gene-set structures. Imposing a naive Bayes kernel machine (KM) model, we estimate gene-set specific risk models that relate each gene-set to the outcome in stage I. The KM framework efficiently models potentially nonlinear effects of predictors without requiring explicit specification of functional forms. In stage II, we aggregate information across gene-sets via a regularization procedure. Estimation and computational efficiency is further improved with kernel principal component analysis. Asymptotic results for model estimation and gene-set selection are derived and numerical studies suggest that the proposed procedure could outperform existing procedures for constructing genetic risk models.

Suggested Citation

  • Jessica Minnier & Ming Yuan & Jun S. Liu & Tianxi Cai, 2015. "Risk Classification With an Adaptive Naive Bayes Kernel Machine Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 393-404, March.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:393-404
    DOI: 10.1080/01621459.2014.908778
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.908778
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.908778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiming Hu & Qiongshi Lu & Ryan Powles & Xinwei Yao & Can Yang & Fang Fang & Xinran Xu & Hongyu Zhao, 2017. "Leveraging functional annotations in genetic risk prediction for human complex diseases," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-16, June.
    2. Sujata Dash & Ajith Abraham & Ashish Kr Luhach & Jolanta Mizera-Pietraszko & Joel JPC Rodrigues, 2020. "Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    3. Rafael Blanquero & Emilio Carrizosa & Pepa Ramírez-Cobo & M. Remedios Sillero-Denamiel, 2022. "Constrained Naïve Bayes with application to unbalanced data classification," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1403-1425, December.
    4. Islam Shofiqul & Anand Sonia & Thabane Lehana & Hamid Jemila & Beyene Joseph, 2017. "Comparing the performance of linear and nonlinear principal components in the context of high-dimensional genomic data integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(3), pages 199-216, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:393-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.