IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i507p1270-1284.html
   My bibliography  Save this article

Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Varying Coefficient Models

Author

Listed:
  • Jianqing Fan
  • Yunbei Ma
  • Wei Dai

Abstract

The varying coefficient model is an important class of nonparametric statistical model, which allows us to examine how the effects of covariates vary with exposure variables. When the number of covariates is large, the issue of variable selection arises. In this article, we propose and investigate marginal nonparametric screening methods to screen variables in sparse ultra-high-dimensional varying coefficient models. The proposed nonparametric independence screening (NIS) selects variables by ranking a measure of the nonparametric marginal contributions of each covariate given the exposure variable. The sure independent screening property is established under some mild technical conditions when the dimensionality is of nonpolynomial order, and the dimensionality reduction of NIS is quantified. To enhance the practical utility and finite sample performance, two data-driven iterative NIS (INIS) methods are proposed for selecting thresholding parameters and variables: conditional permutation and greedy methods, resulting in conditional-INIS and greedy-INIS. The effectiveness and flexibility of the proposed methods are further illustrated by simulation studies and real data applications.

Suggested Citation

  • Jianqing Fan & Yunbei Ma & Wei Dai, 2014. "Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Varying Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1270-1284, September.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1270-1284
    DOI: 10.1080/01621459.2013.879828
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.879828
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.879828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1270-1284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.