IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i506p525-536.html
   My bibliography  Save this article

Using Data Augmentation to Facilitate Conduct of Phase I-II Clinical Trials With Delayed Outcomes

Author

Listed:
  • Ick Hoon Jin
  • Suyu Liu
  • Peter F. Thall
  • Ying Yuan

Abstract

A practical impediment in adaptive clinical trials is that outcomes must be observed soon enough to apply decision rules to choose treatments for new patients. For example, if outcomes take up to six weeks to evaluate and the accrual rate is one patient per week, on average three new patients will be accrued while waiting to evaluate the outcomes of the previous three patients. The question is how to treat the new patients. This logistical problem persists throughout the trial. Various ad hoc practical solutions are used, none entirely satisfactory. We focus on this problem in phase I-II clinical trials that use binary toxicity and efficacy, defined in terms of event times, to choose doses adaptively for successive cohorts. We propose a general approach to this problem that treats late-onset outcomes as missing data, uses data augmentation to impute missing outcomes from posterior predictive distributions computed from partial follow-up times and complete outcome data, and applies the design's decision rules using the completed data. We illustrate the method with two cancer trials conducted using a phase I-II design based on efficacy-toxicity trade-offs, including a computer stimulation study. Supplementary materials for this article are available online.

Suggested Citation

  • Ick Hoon Jin & Suyu Liu & Peter F. Thall & Ying Yuan, 2014. "Using Data Augmentation to Facilitate Conduct of Phase I-II Clinical Trials With Delayed Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 525-536, June.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:525-536
    DOI: 10.1080/01621459.2014.881740
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.881740
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.881740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifei Zhang & Sha Cao & Chi Zhang & Ick Hoon Jin & Yong Zang, 2021. "A Bayesian adaptive phase I/II clinical trial design with late‐onset competing risk outcomes," Biometrics, The International Biometric Society, vol. 77(3), pages 796-808, September.
    2. Beibei Guo & Ying Yuan, 2023. "DROID: dose‐ranging approach to optimizing dose in oncology drug development," Biometrics, The International Biometric Society, vol. 79(4), pages 2907-2919, December.
    3. Beibei Guo & Ying Yuan, 2017. "Bayesian Phase I/II Biomarker-Based Dose Finding for Precision Medicine With Molecularly Targeted Agents," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 508-520, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:525-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.