IDEAS home Printed from
   My bibliography  Save this article

Testing for Gene--Environment and Gene--Gene Interactions Under Monotonicity Constraints


  • Summer S. Han
  • Philip S. Rosenberg
  • Nilanjan Chatterjee


Recent genome-wide association studies (GWASs) designed to detect the main effects of genetic markers have had considerable success with many findings validated by replication studies. However, relatively few findings of gene--gene or gene--environment interactions have been successfully reproduced. Besides the main issues associated with insufficient sample size in current studies, a complication is that interactions that rank high based on p -values often correspond to extreme forms of joint effects that are biologically less plausible. To reduce false positives and to increase power, we develop various gene--environment/gene--gene tests based on biologically more plausible constraints using bivariate isotonic regressions for case--control data. We extend our method to exploit gene--environment or gene--gene independence information, integrating the approach proposed by Chatterjee and Carroll. We propose appropriate nonparametric and parametric permutation procedures for evaluating the significance of the tests. Simulations show that our method gains power over traditional unconstrained methods by reducing the sizes of alternative parameter spaces. We apply our method to several real-data examples, including an analysis of bladder cancer data to detect interactions between the NAT2 gene and smoking. We also show that the proposed method is computationally feasible for large-scale problems by applying it to the National Cancer Institute (NCI) lung cancer GWAS data.

Suggested Citation

  • Summer S. Han & Philip S. Rosenberg & Nilanjan Chatterjee, 2012. "Testing for Gene--Environment and Gene--Gene Interactions Under Monotonicity Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1441-1452, December.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1441-1452
    DOI: 10.1080/01621459.2012.726892

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1441-1452. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.