IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Smooth Blockwise Iterative Thresholding: A Smooth Fixed Point Estimator Based on the Likelihood’s Block Gradient

Listed author(s):
  • Sylvain Sardy
Registered author(s):

    The proposed smooth blockwise iterative thresholding estimator (SBITE) is a model selection technique defined as a fixed point reached by iterating a likelihood gradient-based thresholding function. The smooth James--Stein thresholding function has two regularization parameters λ and ν, and a smoothness parameter s . It enjoys smoothness like ridge regression and selects variables like lasso. Focusing on Gaussian regression, we show that SBITE is uniquely defined, and that its Stein unbiased risk estimate is a smooth function of λ and ν, for better selection of the two regularization parameters. We perform a Monte Carlo simulation to investigate the predictive and oracle properties of this smooth version of adaptive lasso. The motivation is a gravitational wave burst detection problem from several concomitant time series. A nonparametric wavelet-based estimator is developed to combine information from all captors by block-thresholding multiresolution coefficients. We study how the smoothness parameter s tempers the erraticity of the risk estimate, and derives a universal threshold, an information criterion, and an oracle inequality in this canonical setting.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 498 (June)
    Pages: 800-813

    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:800-813
    DOI: 10.1080/01621459.2012.664527
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:800-813. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.