IDEAS home Printed from
   My bibliography  Save this article

Moderate-Deviation-Based Inference for Random Degeneration in Paired Rank Lists


  • Peter Hall
  • Michael G. Schimek


Consider a problem where N items (objects or individuals) are judged by assessors using their perceptions of a set of performance criteria, or alternatively by technical devices. In particular, two assessors might rank the items between 1 and N on the basis of relative performance, independently of each other. We can aggregate the rank lists by assigning one if the two assessors agree, and zero otherwise, and we can modify this approach to make it robust against irregularities. In this article, we consider methods and algorithms that can be used to address this problem. We study their theoretical properties in the case of a model based on nonstationary Bernoulli trials, and we report on their numerical properties for both simulated and real data.

Suggested Citation

  • Peter Hall & Michael G. Schimek, 2012. "Moderate-Deviation-Based Inference for Random Degeneration in Paired Rank Lists," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 661-672, June.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:661-672
    DOI: 10.1080/01621459.2012.682539

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:bpj:sagmbi:v:16:y:2017:i:1:p:31-45:n:4 is not listed on IDEAS
    2. Li, Yumeng & Wang, Ran & Yao, Nian & Zhang, Shuguang, 2017. "A moderate deviation principle for stochastic Volterra equation," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 79-85.
    3. Arboretti, Rosa & Bonnini, Stefano & Corain, Livio & Salmaso, Luigi, 2014. "A permutation approach for ranking of multivariate populations," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 39-57.
    4. repec:eee:csdana:v:115:y:2017:i:c:p:122-135 is not listed on IDEAS

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:661-672. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.