IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Bayesian Inference for Dynamic Treatment Regimes: Mobility, Equity, and Efficiency in Student Tracking

Listed author(s):
  • Tristan Zajonc
Registered author(s):

    Policies in health, education, and economics often unfold sequentially and adapt to changing conditions. Such time-varying treatments pose problems for standard program evaluation methods because intermediate outcomes are simultaneously pretreatment confounders and posttreatment outcomes. This article extends the Bayesian perspective on causal inference and optimal treatment to these types of dynamic treatment regimes. A unifying idea remains ignorable treatment assignment, which now sequentially includes selection on intermediate outcomes. I present methods to estimate the causal effect of arbitrary regimes, recover the optimal regime, and characterize the set of feasible outcomes under different regimes. I demonstrate these methods through an application to optimal student tracking in ninth and tenth grade mathematics. For the sample considered, student mobility under the status-quo regime is significantly below the optimal rate and existing policies reinforce between-student inequality. An easy to implement optimal dynamic tracking regime, which promotes more students to honors in tenth grade, increases average final achievement to 0.07 standard deviations above the status quo while lowering inequality; there is no binding equity-efficiency tradeoff. The proposed methods provide a flexible and principled approach to causal inference for time-varying treatments and optimal treatment choice under uncertainty. This article has online supplementary material.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 497 (March)
    Pages: 80-92

    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:80-92
    DOI: 10.1080/01621459.2011.643747
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:80-92. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.