IDEAS home Printed from
   My bibliography  Save this article

Optimal Designs for Rational Function Regression


  • Dávid Papp


We consider the problem of finding optimal nonsequential designs for a large class of regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. Since the design weights can be found easily by existing methods once the support is known, we concentrate on determining the support of the optimal design. The proposed method treats D-, E-, A-, and Φ p -optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well-established numerical optimization methods. In contrast to optimization-based methods previously proposed for the solution of similar design problems, our method also has theoretical guarantee of its algorithmic efficiency; in concordance with the theory, the actual running times of all numerical examples considered in the paper are negligible. The numerical stability of the method is demonstrated in an example involving high-degree polynomials. As a corollary, an upper bound on the size of the support set of the minimally supported optimal designs is also found.

Suggested Citation

  • Dávid Papp, 2012. "Optimal Designs for Rational Function Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 400-411, March.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:400-411
    DOI: 10.1080/01621459.2012.656035

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:400-411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.