IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Optimal Designs for Rational Function Regression

  • D�vid Papp
Registered author(s):

    We consider the problem of finding optimal nonsequential designs for a large class of regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. Since the design weights can be found easily by existing methods once the support is known, we concentrate on determining the support of the optimal design. The proposed method treats D-, E-, A-, and Φ p -optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well-established numerical optimization methods. In contrast to optimization-based methods previously proposed for the solution of similar design problems, our method also has theoretical guarantee of its algorithmic efficiency; in concordance with the theory, the actual running times of all numerical examples considered in the paper are negligible. The numerical stability of the method is demonstrated in an example involving high-degree polynomials. As a corollary, an upper bound on the size of the support set of the minimally supported optimal designs is also found.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 497 (March)
    Pages: 400-411

    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:400-411
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:400-411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.