IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v49y2022i16p4137-4161.html
   My bibliography  Save this article

A new regression model for rates and proportions data with applications

Author

Listed:
  • F. Prataviera
  • G. M. Cordeiro
  • E. M. M. Ortega
  • E. M. Hashimoto
  • V. G. Cancho

Abstract

We propose a new continuous distribution in the interval $ (0,1) $ (0,1) based on the generalized odd log-logistic-G family, whose density function can be symmetrical, asymmetric, unimodal and bimodal. The new model is implemented using the gamlss packages in R. We propose an extended regression based on this distribution which includes as sub-models some important regressions. We employ a frequentist and Bayesian analysis to estimate the parameters and adopt the non-parametric and parametric bootstrap methods to obtain better efficiency of the estimators. Some simulations are conducted to verify the empirical distribution of the maximum likelihood estimators. We compare the empirical distribution of the quantile residuals with the standard normal distribution. The extended regression can give more realistic fits than other regressions in the analysis of proportional data.

Suggested Citation

  • F. Prataviera & G. M. Cordeiro & E. M. M. Ortega & E. M. Hashimoto & V. G. Cancho, 2022. "A new regression model for rates and proportions data with applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(16), pages 4137-4161, December.
  • Handle: RePEc:taf:japsta:v:49:y:2022:i:16:p:4137-4161
    DOI: 10.1080/02664763.2021.1973385
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2021.1973385
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2021.1973385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:49:y:2022:i:16:p:4137-4161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.