IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v49y2022i15p3976-4002.html
   My bibliography  Save this article

Robust and efficient estimation of GARCH models based on Hellinger distance

Author

Listed:
  • Qiang Zhao
  • Liang Chen
  • Jingjing Wu

Abstract

It is well known that financial data frequently contain outlying observations. Almost all methods and techniques used to estimate GARCH models are likelihood-based and thus generally non-robust against outliers. Minimum distance method, as an important tool for statistical inferences and a competitive alternative for achieving robustness, has surprisingly not been well explored for GARCH models. In this paper, we proposed a minimum Hellinger distance estimator (MHDE) and a minimum profile Hellinger distance estimator (MPHDE), depending on whether the innovation distribution is specified or not, for estimating the parameters in GARCH models. The construction and investigation of the two estimators are quite involved due to the non-i.i.d. nature of data. We proved that the MHDE is a consistent estimator and derived its bias in explicit expression. For both of the proposed estimators, we demonstrated their finite-sample performance through simulation studies and compared with the well-established methods including MLE, Gaussian Quasi-MLE, Non-Gaussian Quasi-MLE and Least Absolute Deviation estimator. Our numerical results showed that MHDE and MPHDE have much better performance than MLE-based methods when data are contaminated while simultaneously they are very competitive when data is clean, which testified to the robustness and efficiency of the two proposed MHD-type estimations.

Suggested Citation

  • Qiang Zhao & Liang Chen & Jingjing Wu, 2022. "Robust and efficient estimation of GARCH models based on Hellinger distance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(15), pages 3976-4002, November.
  • Handle: RePEc:taf:japsta:v:49:y:2022:i:15:p:3976-4002
    DOI: 10.1080/02664763.2021.1970120
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2021.1970120
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2021.1970120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:49:y:2022:i:15:p:3976-4002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.