Author
Listed:
- Asuman Yılmaz
- Mahmut Kara
- Onur Özdemir
Abstract
The extreme value distribution was developed for modeling extreme-order statistics or extreme events. In this study, we discuss the distribution of the largest extreme. The main objective of this paper is to determine the best estimators of the unknown parameters of the extreme value distribution. Thus, both classical and Bayesian methods are used. The classical estimation methods under consideration are maximum likelihood estimators, moment’s estimators, least squares estimators, and weighted least squares estimators, percentile estimators, the ordinary least squares estimators, best linear unbiased estimators, L-moments estimators, trimmed L-moments estimators, and Bain and Engelhardt estimators. We also propose new estimators for the unknown parameters. Bayesian estimators of the parameters are derived by using Lindley’s approximation and Markov Chain Monte Carlo methods. The asymptotic confidence intervals are considered by using maximum likelihood estimators. The Bayesian credible intervals are also obtained by using Gibbs sampling. The performances of these estimation methods are compared with respect to their biases and mean square errors through a simulation study. The maximum daily flood discharge (annual) data sets of the Meriç River and Feather River are analyzed at the end of the study for a better understanding of the methods presented in this paper.
Suggested Citation
Asuman Yılmaz & Mahmut Kara & Onur Özdemir, 2021.
"Comparison of different estimation methods for extreme value distribution,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(13-15), pages 2259-2284, November.
Handle:
RePEc:taf:japsta:v:48:y:2021:i:13-15:p:2259-2284
DOI: 10.1080/02664763.2021.1940109
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:48:y:2021:i:13-15:p:2259-2284. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.