Author
Listed:
- Chong Sheng
- Matthias Hwai Yong Tan
- Lu Zou
Abstract
Existing projection designs (e.g. maximum projection designs) attempt to achieve good space-filling properties in all projections. However, when using a Gaussian process (GP), model-based design criteria such as the entropy criterion is more appropriate. We employ the entropy criterion averaged over a set of projections, called expected entropy criterion (EEC), to generate projection designs. We show that maximum EEC designs are invariant to monotonic transformations of the response, i.e. they are optimal for a wide class of stochastic process models. We also demonstrate that transformation of each column of a Latin hypercube design (LHD) based on a monotonic function can substantially improve the EEC. Two types of input transformations are considered: a quantile function of a symmetric Beta distribution chosen to optimize the EEC, and a nonparametric transformation corresponding to the quantile function of a symmetric density chosen to optimize the EEC. Numerical studies show that the proposed transformations of the LHD are efficient and effective for building robust maximum EEC designs. These designs give projections with markedly higher entropies and lower maximum prediction variances (MPV's) at the cost of small increases in average prediction variances (APV's) compared to state-of-the-art space-filling designs over wide ranges of covariance parameter values.
Suggested Citation
Chong Sheng & Matthias Hwai Yong Tan & Lu Zou, 2021.
"Maximum expected entropy transformed Latin hypercube designs,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(12), pages 2152-2177, September.
Handle:
RePEc:taf:japsta:v:48:y:2021:i:12:p:2152-2177
DOI: 10.1080/02664763.2020.1786674
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:48:y:2021:i:12:p:2152-2177. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.