Author
Listed:
- Bogumił Kamiński
- Przemysław Szufel
Abstract
In this paper we develop and test experimental methodologies for selection of the best alternative among a discrete number of available treatments. We consider a scenario where a researcher sequentially decides which treatments are assigned to experimental units. This problem is particularly challenging if a single measurement of the response to a treatment is time-consuming and there is a limited time for experimentation. This time can be decreased if it is possible to perform measurements in parallel. In this work we propose and discuss asynchronous extensions of two well-known Ranking & Selection policies, namely, Optimal Computing Budget Allocation (OCBA) and Knowledge Gradient (KG) policy. Our extensions (Asynchronous Optimal Computing Budget Allocation (AOCBA) and Asynchronous Knowledge Gradient (AKG), respectively) allow for parallel asynchronous allocation of measurements. Additionally, since the standard KG method is sequential (it can only allocate one experiment at a time) we propose a parallel synchronous extension of KG policy – Synchronous Knowledge Gradient (SKG). Computer simulations of our algorithms indicate that our parallel KG-based policies (AKG, SKG) outperform the standard OCBA method as well as AOCBA, if the number of evaluated alternatives is small or the computing/experimental budget is limited. For experimentations with large budgets and big sets of alternatives, both the OCBA and AOCBA policies are more efficient.
Suggested Citation
Bogumił Kamiński & Przemysław Szufel, 2018.
"On parallel policies for ranking and selection problems,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(9), pages 1690-1713, July.
Handle:
RePEc:taf:japsta:v:45:y:2018:i:9:p:1690-1713
DOI: 10.1080/02664763.2017.1390555
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:9:p:1690-1713. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.