IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i12p2761-2776.html
   My bibliography  Save this article

Sensitivity analysis for the identifiability with application to latent random effect model for the mixed data

Author

Listed:
  • E. Bahrami Samani

Abstract

In this paper, we study the indentifiability of a latent random effect model for the mixed correlated continuous and ordinal longitudinal responses. We derive conditions for the identifiability of the covariance parameters of the responses. Also, we proposed sensitivity analysis to investigate the perturbation from the non-identifiability of the covariance parameters, it is shown how one can use some elements of covariance structure. These elements associate conditions for identifiability of the covariance parameters of the responses. Influence of small perturbation of these elements on maximal normal curvature is also studied. The model is illustrated using medical data.

Suggested Citation

  • E. Bahrami Samani, 2014. "Sensitivity analysis for the identifiability with application to latent random effect model for the mixed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2761-2776, December.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2761-2776
    DOI: 10.1080/02664763.2014.929641
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.929641
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.929641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tabrizi, Elham & Samani, Ehsan Bahrami & Ganjali, Mojtaba, 2020. "A note on the identifiability of latent variable models for mixed longitudinal data," Statistics & Probability Letters, Elsevier, vol. 167(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2761-2776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.