IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i2p337-346.html
   My bibliography  Save this article

A family of methods for statistical disclosure control

Author

Listed:
  • Andreas Quatember
  • Monika Cornelia Hausner

Abstract

Statistical disclosure control (SDC) is a balancing act between mandatory data protection and the comprehensible demand from researchers for access to original data. In this paper, a family of methods is defined to ‘mask’ sensitive variables before data files can be released. In the first step, the variable to be masked is ‘cloned’ (C). Then, the duplicated variable as a whole or just a part of it is ‘suppressed’ (S). The masking procedure's third step ‘imputes’ (I) data for these artificial missings. Then, the original variable can be deleted and its masked substitute has to serve as the basis for the analysis of data. The idea of this general ‘CSI framework’ is to open the wide field of imputation methods for SDC. The method applied in the I-step can make use of available auxiliary variables including the original variable. Different members of this family of methods delivering variance estimators are discussed in some detail. Furthermore, a simulation study analyzes various methods belonging to the family with respect to both, the quality of parameter estimation and privacy protection. Based on the results obtained, recommendations are formulated for different estimation tasks.

Suggested Citation

  • Andreas Quatember & Monika Cornelia Hausner, 2013. "A family of methods for statistical disclosure control," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 337-346, February.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:2:p:337-346
    DOI: 10.1080/02664763.2012.743975
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.743975
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.743975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:2:p:337-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.