IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i2p266-281.html

An iterative plug-in algorithm for decomposing seasonal time series using the Berlin Method

Author

Listed:
  • Yuanhua Feng

Abstract

We propose a fast data-driven procedure for decomposing seasonal time series using the Berlin Method, the procedure used, e.g. by the German Federal Statistical Office in this context. The formula of the asymptotic optimal bandwidth h A is obtained. Methods for estimating the unknowns in h A are proposed. The algorithm is developed by adapting the well-known iterative plug-in idea to time series decomposition. Asymptotic behaviour of the proposal is investigated. Some computational aspects are discussed in detail. Data examples show that the proposal works very well in practice and that data-driven bandwidth selection offers new possibilities to improve the Berlin Method. Deep insights into the iterative plug-in rule are also provided.

Suggested Citation

  • Yuanhua Feng, 2013. "An iterative plug-in algorithm for decomposing seasonal time series using the Berlin Method," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 266-281, February.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:2:p:266-281
    DOI: 10.1080/02664763.2012.740626
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.740626
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.740626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Beran & Jeremy Näscher & Fabian Pietsch & Stephan Walterspacher, 2024. "Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(4), pages 705-731, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:2:p:266-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.