IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i12p2653-2669.html
   My bibliography  Save this article

Integer autoregressive models with structural breaks

Author

Listed:
  • Akanksha S. Kashikar
  • Neelabh Rohan
  • T.V. Ramanathan

Abstract

Even though integer-valued time series are common in practice, the methods for their analysis have been developed only in recent past. Several models for stationary processes with discrete marginal distributions have been proposed in the literature. Such processes assume the parameters of the model to remain constant throughout the time period. However, this need not be true in practice. In this paper, we introduce non-stationary integer-valued autoregressive (INAR) models with structural breaks to model a situation, where the parameters of the INAR process do not remain constant over time. Such models are useful while modelling count data time series with structural breaks. The Bayesian and Markov Chain Monte Carlo (MCMC) procedures for the estimation of the parameters and break points of such models are discussed. We illustrate the model and estimation procedure with the help of a simulation study. The proposed model is applied to the two real biometrical data sets.

Suggested Citation

  • Akanksha S. Kashikar & Neelabh Rohan & T.V. Ramanathan, 2013. "Integer autoregressive models with structural breaks," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2653-2669, December.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:12:p:2653-2669
    DOI: 10.1080/02664763.2013.823920
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.823920
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.823920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    2. Manik Awale & N. Balakrishna & T. V. Ramanathan, 2019. "Testing the constancy of the thinning parameter in a random coefficient integer autoregressive model," Statistical Papers, Springer, vol. 60(5), pages 1515-1539, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:12:p:2653-2669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.