IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

The Complete Gradient Clustering Algorithm: properties in practical applications

Listed author(s):
  • Piotr Kulczycki
  • Malgorzata Charytanowicz
  • Piotr A. Kowalski
  • Szymon Lukasik
Registered author(s):

    The aim of this paper is to present a Complete Gradient Clustering Algorithm, its applicational aspects and properties, as well as to illustrate them with specific practical problems from the subject of bioinformatics (the categorization of grains for seed production), management (the design of a marketing support strategy for a mobile phone operator) and engineering (the synthesis of a fuzzy controller). The main property of the Complete Gradient Clustering Algorithm is that it does not require strict assumptions regarding the desired number of clusters, which allows to better suit its obtained number to a real data structure. In the basic version it is possible to provide a complete set of procedures for defining the values of all functions and parameters relying on the optimization criterions. It is also possible to point out parameters, the potential change which implies influence on the size of the number of clusters (while still not giving an exact number) and the proportion between their numbers in dense and sparse areas of data elements. Moreover, the Complete Gradient Clustering Algorithm can be used to identify and possibly eliminate atypical elements (outliers). These properties proved to be very useful in the presented applications and may also be functional in many other practical problems.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of Applied Statistics.

    Volume (Year): 39 (2012)
    Issue (Month): 6 (November)
    Pages: 1211-1224

    in new window

    Handle: RePEc:taf:japsta:v:39:y:2012:i:6:p:1211-1224
    DOI: 10.1080/02664763.2011.644526
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:6:p:1211-1224. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.