IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i9p1963-1975.html
   My bibliography  Save this article

A Bayesian hierarchical approach to dual response surface modelling

Author

Listed:
  • Younan Chen
  • Keying Ye

Abstract

In modern quality engineering, dual response surface methodology is a powerful tool to model an industrial process by using both the mean and the standard deviation of the measurements as the responses. The least squares method in regression is often used to estimate the coefficients in the mean and standard deviation models, and various decision criteria are proposed by researchers to find the optimal conditions. Based on the inherent hierarchical structure of the dual response problems, we propose a Bayesian hierarchical approach to model dual response surfaces. Such an approach is compared with two frequentist least squares methods by using two real data sets and simulated data.

Suggested Citation

  • Younan Chen & Keying Ye, 2011. "A Bayesian hierarchical approach to dual response surface modelling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1963-1975, November.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1963-1975 DOI: 10.1080/02664763.2010.545106
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2010.545106
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 605-654.
    2. Andrea Ichino & Fabrizia Mealli & Tommaso Nannicini, 2008. "From temporary help jobs to permanent employment: what can we learn from matching estimators and their sensitivity?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 305-327.
    3. Torsten Persson, 2001. "Currency unions and trade: how large is the treatment effect?," Economic Policy, CEPR;CES;MSH, vol. 16(33), pages 433-462, October.
    4. Richard Blundell & Monica Costa Dias & Costas Meghir & John Van Reenen, 2004. "Evaluating the Employment Impact of a Mandatory Job Search Program," Journal of the European Economic Association, MIT Press, vol. 2(4), pages 569-606, June.
    5. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, pages 1161-1189.
    6. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    7. Zhao, Zhong, 2008. "Sensitivity of propensity score methods to the specifications," Economics Letters, Elsevier, pages 309-319.
    8. Lawrence M. Berger & Jennifer Hill & Jane Waldfogel, 2005. "Maternity leave, early maternal employment and child health and development in the US," Economic Journal, Royal Economic Society, vol. 115(501), pages 29-47, February.
    9. Li, Qi & Maasoumi, Esfandiar & Racine, Jeffrey S., 2009. "A nonparametric test for equality of distributions with mixed categorical and continuous data," Journal of Econometrics, Elsevier, pages 186-200.
    10. Shaikh, Azeem M. & Simonsen, Marianne & Vytlacil, Edward J. & Yildiz, Nese, 2009. "A specification test for the propensity score using its distribution conditional on participation," Journal of Econometrics, Elsevier, vol. 151(1), pages 33-46, July.
    11. Jalan, Jyotsna & Ravallion, Martin, 2003. "Estimating the Benefit Incidence of an Antipoverty Program by Propensity-Score Matching," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 19-30, January.
    12. Petri Böckerman & Pekka Ilmakunnas, 2009. "Unemployment and self-assessed health: evidence from panel data," Health Economics, John Wiley & Sons, Ltd., vol. 18(2), pages 161-179.
    13. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    14. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    15. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1963-1975. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.