IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A Bayesian approach to estimating linear mixtures with unknown covariance structure

  • Hannes Kazianka
  • Michael Mulyk
  • J�rgen Pilz
Registered author(s):

    In this paper, we study a new Bayesian approach for the analysis of linearly mixed structures. In particular, we consider the case of hyperspectral images, which have to be decomposed into a collection of distinct spectra, called endmembers, and a set of associated proportions for every pixel in the scene. This problem, often referred to as spectral unmixing, is usually considered on the basis of the linear mixing model (LMM). In unsupervised approaches, the endmember signatures have to be calculated by an endmember extraction algorithm, which generally relies on the supposition that there are pure (unmixed) pixels contained in the image. In practice, this assumption may not hold for highly mixed data and consequently the extracted endmember spectra differ from the true ones. A way out of this dilemma is to consider the problem under the normal compositional model (NCM). Contrary to the LMM, the NCM treats the endmembers as random Gaussian vectors and not as deterministic quantities. Existing Bayesian approaches for estimating the proportions under the NCM are restricted to the case that the covariance matrix of the Gaussian endmembers is a multiple of the identity matrix. The self-evident conclusion is that this model is not suitable when the variance differs from one spectral channel to the other, which is a common phenomenon in practice. In this paper, we first propose a Bayesian strategy for the estimation of the mixing proportions under the assumption of varying variances in the spectral bands. Then we generalize this model to handle the case of a completely unknown covariance structure. For both algorithms, we present Gibbs sampling strategies and compare their performance with other, state of the art, unmixing routines on synthetic as well as on real hyperspectral fluorescence spectroscopy data.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1080/02664763.2010.529879
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of Applied Statistics.

    Volume (Year): 38 (2011)
    Issue (Month): 9 (September)
    Pages: 1801-1817

    as
    in new window

    Handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1801-1817
    Contact details of provider: Web page: http://www.tandfonline.com/CJAS20

    Order Information: Web: http://www.tandfonline.com/pricing/journal/CJAS20

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1801-1817. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.