IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Discriminant analyses of peanut allergy severity scores

Listed author(s):
  • O. Collignon
  • J.-M. Monnez
  • P. Vallois
  • F. Codreanu
  • J.-M. Renaudin
  • G. Kanny
  • M. Brulliard
  • B. E. Bihain
  • S. Jacquenet
  • D. Moneret-Vautrin
Registered author(s):

    Peanut allergy is one of the most prevalent food allergies. The possibility of a lethal accidental exposure and the persistence of the disease make it a public health problem. Evaluating the intensity of symptoms is accomplished with a double blind placebo-controlled food challenge (DBPCFC), which scores the severity of reactions and measures the dose of peanut that elicits the first reaction. Since DBPCFC can result in life-threatening responses, we propose an alternate procedure with the long-term goal of replacing invasive allergy tests. Discriminant analyses of DBPCFC score, the eliciting dose and the first accidental exposure score were performed in 76 allergic patients using 6 immunoassays and 28 skin prick tests. A multiple factorial analysis was performed to assign equal weights to both groups of variables, and predictive models were built by cross-validation with linear discriminant analysis, k -nearest neighbours, classification and regression trees, penalized support vector machine, stepwise logistic regression and AdaBoost methods. We developed an algorithm for simultaneously clustering eliciting dose values and selecting discriminant variables. Our main conclusion is that antibody measurements offer information on the allergy severity, especially those directed against rAra-h1 and rAra-h3 . Further independent validation of these results and the use of new predictors will help extend this study to clinical practices.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of Applied Statistics.

    Volume (Year): 38 (2011)
    Issue (Month): 9 (August)
    Pages: 1783-1799

    in new window

    Handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1783-1799
    DOI: 10.1080/02664763.2010.529878
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1783-1799. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.