Author
Abstract
Multiple imputation has emerged as a widely used model-based approach in dealing with incomplete data in many application areas. Gaussian and log-linear imputation models are fairly straightforward to implement for continuous and discrete data, respectively. However, in missing data settings which include a mix of continuous and discrete variables, correct specification of the imputation model could be a daunting task owing to the lack of flexible models for the joint distribution of variables of different nature. This complication, along with accessibility to software packages that are capable of carrying out multiple imputation under the assumption of joint multivariate normality, appears to encourage applied researchers for pragmatically treating the discrete variables as continuous for imputation purposes, and subsequently rounding the imputed values to the nearest observed category. In this article, I introduce a distance-based rounding approach for ordinal variables in the presence of continuous ones. The first step of the proposed rounding process is predicated upon creating indicator variables that correspond to the ordinal levels, followed by jointly imputing all variables under the assumption of multivariate normality. The imputed values are then converted to the ordinal scale based on their Euclidean distances to a set of indicators, with minimal distance corresponding to the closest match. I compare the performance of this technique to crude rounding via commonly accepted accuracy and precision measures with simulated data sets.
Suggested Citation
Hakan Demirtas, 2010.
"A distance-based rounding strategy for post-imputation ordinal data,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 489-500.
Handle:
RePEc:taf:japsta:v:37:y:2010:i:3:p:489-500
DOI: 10.1080/02664760902744954
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:37:y:2010:i:3:p:489-500. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.