Author
Listed:
- Marcus Perry
- Joseph Pignatiello
Abstract
Control charts are used to detect changes in a process. Once a change is detected, knowledge of the change point would simplify the search for and identification of the special cause. Consequently, having an estimate of the process change point following a control chart signal would be useful to process analysts. Change-point methods for the uncorrelated process have been studied extensively in the literature; however, less attention has been given to change-point methods for autocorrelated processes. Autocorrelation is common in practice and is often modeled via the class of autoregressive moving average (ARMA) models. In this article, a maximum likelihood estimator for the time of step change in the mean of covariance-stationary processes that fall within the general ARMA framework is developed. The estimator is intended to be used as an “add-on” following a signal from a phase II control chart. Considering first-order pure and mixed ARMA processes, Monte Carlo simulation is used to evaluate the performance of the proposed change-point estimator across a range of step change magnitudes following a genuine signal from a control chart. Results indicate that the estimator provides process analysts with an accurate and useful estimate of the last sample obtained from the unchanged process. Additionally, results indicate that if a change-point estimator designed for the uncorrelated process is applied to an autocorrelated process, the performance of the estimator can suffer dramatically.
Suggested Citation
Marcus Perry & Joseph Pignatiello, 2010.
"Identifying the time of step change in the mean of autocorrelated processes,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 119-136.
Handle:
RePEc:taf:japsta:v:37:y:2010:i:1:p:119-136
DOI: 10.1080/02664760802663080
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:37:y:2010:i:1:p:119-136. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.