IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Multiple comparisons based on a modified one-step M-estimator

Listed author(s):
  • Rand Wilcox
Registered author(s):

    Although many methods are available for performing multiple comparisons based on some measure of location, most can be unsatisfactory in at least some situations, in simulations when sample sizes are small, say less than or equal to twenty. That is, the actual Type I error probability can substantially exceed the nominal level, and for some methods the actual Type I error probability can be well below the nominal level, suggesting that power might be relatively poor. In addition, all methods based on means can have relatively low power under arbitrarily small departures from normality. Currently, a method based on 20% trimmed means and a percentile bootstrap method performs relatively well (Wilcox, in press). However, symmetric trimming was used, even when sampling from a highly skewed distribution and a rigid adherence to 20% trimming can result in low efficiency when a distribution is sufficiently heavy-tailed. Robust M-estimators are more flexible but they can be unsatisfactory in terms of Type I errors when sample sizes are small. This paper describes an alternative approach based on a modified one-step M-estimator that introduces more flexibility than a trimmed mean but provides better control over Type I error probabilities compared with using a one-step M-estimator.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of Applied Statistics.

    Volume (Year): 30 (2003)
    Issue (Month): 10 ()
    Pages: 1231-1241

    in new window

    Handle: RePEc:taf:japsta:v:30:y:2003:i:10:p:1231-1241
    DOI: 10.1080/0266476032000137463
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:30:y:2003:i:10:p:1231-1241. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.