IDEAS home Printed from
   My bibliography  Save this article

Multiple comparisons based on a modified one-step M-estimator


  • Rand Wilcox


Although many methods are available for performing multiple comparisons based on some measure of location, most can be unsatisfactory in at least some situations, in simulations when sample sizes are small, say less than or equal to twenty. That is, the actual Type I error probability can substantially exceed the nominal level, and for some methods the actual Type I error probability can be well below the nominal level, suggesting that power might be relatively poor. In addition, all methods based on means can have relatively low power under arbitrarily small departures from normality. Currently, a method based on 20% trimmed means and a percentile bootstrap method performs relatively well (Wilcox, in press). However, symmetric trimming was used, even when sampling from a highly skewed distribution and a rigid adherence to 20% trimming can result in low efficiency when a distribution is sufficiently heavy-tailed. Robust M-estimators are more flexible but they can be unsatisfactory in terms of Type I errors when sample sizes are small. This paper describes an alternative approach based on a modified one-step M-estimator that introduces more flexibility than a trimmed mean but provides better control over Type I error probabilities compared with using a one-step M-estimator.

Suggested Citation

  • Rand Wilcox, 2003. "Multiple comparisons based on a modified one-step M-estimator," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1231-1241.
  • Handle: RePEc:taf:japsta:v:30:y:2003:i:10:p:1231-1241 DOI: 10.1080/0266476032000137463

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Desai, Vijay S. & Crook, Jonathan N. & Overstreet, George A., 1996. "A comparison of neural networks and linear scoring models in the credit union environment," European Journal of Operational Research, Elsevier, vol. 95(1), pages 24-37, November.
    2. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541.
    3. David Hand & Niall Adams, 2000. "Defining attributes for scorecard construction in credit scoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 527-540.
    4. J. Hand, David & Gui Li, Hua & M. Adams, Niall, 2001. "Supervised classification with structured class definitions," Computational Statistics & Data Analysis, Elsevier, vol. 36(2), pages 209-225, April.
    5. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    6. A. Wayne Corcoran, 1978. "The Use of Exponentially-Smoothed Transition Matrices to Improve Forecasting of Cash Flows from Accounts Receivable," Management Science, INFORMS, vol. 24(7), pages 732-739, March.
    7. David J. Hand & Heikki Mannila & Padhraic Smyth, 2001. "Principles of Data Mining," MIT Press Books, The MIT Press, edition 1, volume 1, number 026208290x, July.
    8. Leon H. Liebman, 1972. "A Markov Decision Model for Selecting Optimal Credit Control Policies," Management Science, INFORMS, vol. 18(10), pages 519-525, June.
    9. Mehta, Dileep, 1970. "Optimal Credit Policy Selection: A Dynamic Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 5(4-5), pages 421-444, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:30:y:2003:i:10:p:1231-1241. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.