IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v37y2025i2p430-452.html
   My bibliography  Save this article

Stone's theorem for distributional regression in Wasserstein distance

Author

Listed:
  • Clément Dombry
  • Thibault Modeste
  • Romain Pic

Abstract

We extend the celebrated Stone's theorem to the framework of distributional regression. More precisely, we prove that weighted empirical distributions with local probability weights satisfying the conditions of Stone's theorem provide universally consistent estimates of the conditional distributions, where the error is measured by the Wasserstein distance of order $ p\geq 1 $ p≥1. Furthermore, for p = 1, we determine the minimax rates of convergence on specific classes of distributions. We finally provide some applications of these results, including the estimation of conditional tail expectation or probability weighted moments.

Suggested Citation

  • Clément Dombry & Thibault Modeste & Romain Pic, 2025. "Stone's theorem for distributional regression in Wasserstein distance," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 37(2), pages 430-452, April.
  • Handle: RePEc:taf:gnstxx:v:37:y:2025:i:2:p:430-452
    DOI: 10.1080/10485252.2024.2393172
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2024.2393172
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2024.2393172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:37:y:2025:i:2:p:430-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.