IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v31y2019i2p268-288.html
   My bibliography  Save this article

Sufficient dimension reduction via distance covariance with multivariate responses

Author

Listed:
  • Xianyan Chen
  • Qingcong Yuan
  • Xiangrong Yin

Abstract

In this article, we propose a new method for sufficient dimension reduction when both response and predictor are vectors. The new method, using distance covariance, keeps the model-free advantage, and can fully recover the central subspace even when many predictors are discrete. We then extend this method to the dual central subspace, including a special case of canonical correlation analysis. We illustrated estimators through extensive simulations and real datasets, and compared to some existing methods, showing that our estimators are competitive and robust.

Suggested Citation

  • Xianyan Chen & Qingcong Yuan & Xiangrong Yin, 2019. "Sufficient dimension reduction via distance covariance with multivariate responses," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(2), pages 268-288, April.
  • Handle: RePEc:taf:gnstxx:v:31:y:2019:i:2:p:268-288
    DOI: 10.1080/10485252.2018.1562065
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2018.1562065
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2018.1562065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    2. Zhang, Wei & Gao, Wei & Ng, Hon Keung Tony, 2023. "Multivariate tests of independence based on a new class of measures of independence in Reproducing Kernel Hilbert Space," Journal of Multivariate Analysis, Elsevier, vol. 195(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:31:y:2019:i:2:p:268-288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.