IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v28y2016i3p515-530.html
   My bibliography  Save this article

Entropy-based model-free feature screening for ultrahigh-dimensional multiclass classification

Author

Listed:
  • Lyu Ni
  • Fang Fang

Abstract

Most feature screening methods for ultrahigh-dimensional classification explicitly or implicitly assume the covariates are continuous. However, in the practice, it is quite common that both categorical and continuous covariates appear in the data, and applicable feature screening method is very limited. To handle this non-trivial situation, we propose an entropy-based feature screening method, which is model free and provides a unified screening procedure for both categorical and continuous covariates. We establish the sure screening and ranking consistency properties of the proposed procedure. We investigate the finite sample performance of the proposed procedure by simulation studies and illustrate the method by a real data analysis.

Suggested Citation

  • Lyu Ni & Fang Fang, 2016. "Entropy-based model-free feature screening for ultrahigh-dimensional multiclass classification," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 515-530, September.
  • Handle: RePEc:taf:gnstxx:v:28:y:2016:i:3:p:515-530
    DOI: 10.1080/10485252.2016.1167206
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2016.1167206
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2016.1167206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Shaofei & Fu, Guifang, 2022. "Distribution-free and model-free multivariate feature screening via multivariate rank distance correlation," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Xiong, Wei & Chen, Yaxian & Ma, Shuangge, 2023. "Unified model-free interaction screening via CV-entropy filter," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    3. Tao Huang & Jialiang Li, 2018. "Semiparametric model average prediction in panel data analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 125-144, January.
    4. Manhao Luo & Shuangyun Peng & Yanbo Cao & Jing Liu & Bangmei Huang, 2023. "Earthquake fatality prediction based on hybrid feature importance assessment: a case study in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3353-3376, April.
    5. Xianwen Ding & Jiandong Chen & Xueping Chen, 2020. "Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 545-568, July.
    6. Lyu Ni & Fang Fang & Fangjiao Wan, 2017. "Adjusted Pearson Chi-Square feature screening for multi-classification with ultrahigh dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 805-828, November.
    7. Randall Reese & Guifang Fu & Geran Zhao & Xiaotian Dai & Xiaotian Li & Kenneth Chiu, 2022. "Epistasis Detection via the Joint Cumulant," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 514-532, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:28:y:2016:i:3:p:515-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.