IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v25y2013i1p109-128.html
   My bibliography  Save this article

Parametrically guided generalised additive models with application to mergers and acquisitions data

Author

Listed:
  • Jianqing Fan
  • Arnab Maity
  • Yihui Wang
  • Yichao Wu

Abstract

Generalised nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modelling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalised additive model and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.

Suggested Citation

  • Jianqing Fan & Arnab Maity & Yihui Wang & Yichao Wu, 2013. "Parametrically guided generalised additive models with application to mergers and acquisitions data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 109-128, March.
  • Handle: RePEc:taf:gnstxx:v:25:y:2013:i:1:p:109-128
    DOI: 10.1080/10485252.2012.735233
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2012.735233
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2012.735233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshida, Takuma, 2018. "Semiparametric method for model structure discovery in additive regression models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 124-136.
    2. Clemontina A. Davenport & Arnab Maity & Yichao Wu, 2015. "Parametrically guided estimation in nonparametric varying coefficient models with quasi-likelihood," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(2), pages 195-213, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:25:y:2013:i:1:p:109-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.