Author
Listed:
- Mostarina Mitu
- S. M. Mahedy Hasan
- Md Palash Uddin
- Md Al Mamun
- Venkatesan Rajinikanth
- Seifedine Kadry
Abstract
The death of brain cells occurs when blood flow to a particular area of the brain is abruptly cut off, resulting in a stroke. Early recognition of stroke symptoms is essential to prevent strokes and promote a healthy lifestyle. FAST tests (looking for abnormalities in the face, arms, and speech) have limitations in reliability and accuracy for diagnosing strokes. This research employs machine learning (ML) techniques to develop and assess multiple ML models to establish a robust stroke risk prediction framework. This research uses a stacking-based ensemble method to select the best three machine learning (ML) models and combine their collective intelligence. An empirical evaluation of a publicly available stroke prediction dataset demonstrates the superior performance of the proposed stacking-based ensemble model, with only one misclassification. The experimental results reveal that the proposed stacking model surpasses other state-of-the-art research, achieving accuracy, precision, F1-score of 99.99%, recall of 100%, receiver operating characteristics (ROC), Mathews correlation coefficient (MCC), and Kappa scores 1.0. Furthermore, Shapley’s Additive Explanations (SHAP) are employed to analyze the predictions of the black-box machine learning (ML) models. The findings highlight that age, BMI, and glucose level are the most significant risk factors for stroke prediction. These findings contribute to the development of more efficient techniques for stroke prediction, potentially saving many lives.
Suggested Citation
Mostarina Mitu & S. M. Mahedy Hasan & Md Palash Uddin & Md Al Mamun & Venkatesan Rajinikanth & Seifedine Kadry, 2025.
"A stroke prediction framework using explainable ensemble learning,"
Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 28(8), pages 1223-1242, June.
Handle:
RePEc:taf:gcmbxx:v:28:y:2025:i:8:p:1223-1242
DOI: 10.1080/10255842.2024.2316877
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:28:y:2025:i:8:p:1223-1242. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.