Author
Listed:
- M Balamurugan
- Dr. S. Meera
Abstract
A heart attack is intended as top prevalent among all ruinous ailments. Day by day, the number of affected people count is increasing globally. The medical field is struggling to detect heart disease in the initial step. Early prediction can help patients to save their life. Thus, this paper implements a novel heart disease prediction model with the help of a hybrid deep learning strategy. The developed framework consists of various steps like (i) Data collection, (ii) Deep feature extraction, and (iii) Disease prediction. Initially, the standard medical data from various patients are acquired from the clinical standard datasets. Here, a One-Dimensional Convolutional Neural Network (1DCNN) is utilized for extracting the deep features from the acquired medical data to minimize the number of redundant data from the gathered large-scale data. The acquired deep features are directly fed to the Hybrid Optimized Deep Classifier (HODC) with the integration of Temporal Convolutional Networks (TCN) with Long Short-Term Memory (LSTM), where the parameters in both classifiers are optimized using the newly suggested Enhanced Forensic-Based Investigation (EFBI) inspired meta-optimization algorithm. Throughout the result analysis, the accuracy and precision rate of the offered approach is 98.67% and 99.48%. The evaluation outcomes show that the recommended system outperforms the extant systems in terms of performance metrics examination.
Suggested Citation
M Balamurugan & Dr. S. Meera, 2025.
"Hybrid optimized temporal convolutional networks with long short-term memory for heart disease prediction with deep features,"
Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 28(7), pages 996-1020, May.
Handle:
RePEc:taf:gcmbxx:v:28:y:2025:i:7:p:996-1020
DOI: 10.1080/10255842.2024.2310075
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:28:y:2025:i:7:p:996-1020. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.