Author
Listed:
- Hemalatha Karnan
- D. Uma Maheswari
- D. Priyadharshini
- S. Laushya
- T. K. Thivyaprakas
Abstract
The handheld diagnosis and analysis are highly dependent on the physiological data in the clinical sector. Detection of the defect in the neuronal-assisted activity raises the challenge to the prevailing treatment that benefits from machine learning approaches. The congregated EEG data is then utilized in design of learning applications to develop a model that classifies intricate EEG patterns into active and inactive segments. During arithmetic problem-solving EEG signal acquired from frontal lobe contributes for intelligence detection. The low intricate statistical parameters help in understanding the objective. The mean of the segmented samples and standard deviation are the features extracted for model building. The feature selection is handled using correlation and Fisher score between {Fp1 and F8} and priority ranking of the regions with enhanced activity are selected for the classifier models to the training net. The R-studio platform is used to classify the data based on active and inactive liability. The radial basis function kernel for support vector machine (SVM) is deployed to substantiate the proposed methodology. The vulnerable regions F1 and F8 for arithmetic activity can be visualized from the correlation fit performed between regions. Using SVM classifier sensitivity of 92.5% is obtained for the selected features. A wide range of clinical problems can be diagnosed using this model and used for brain-computer interface.
Suggested Citation
Hemalatha Karnan & D. Uma Maheswari & D. Priyadharshini & S. Laushya & T. K. Thivyaprakas, 2025.
"Cognizance detection during mental arithmetic task using statistical approach,"
Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 28(4), pages 558-571, March.
Handle:
RePEc:taf:gcmbxx:v:28:y:2025:i:4:p:558-571
DOI: 10.1080/10255842.2023.2298362
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:28:y:2025:i:4:p:558-571. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.