Author
Listed:
- Mohaddeseh Fatemi
- Zohreh Bahrami
- Marjan Bahraminasab
- Farideh Nabizadeh Chianeh
Abstract
The optimal design of complex engineering systems requires tracing precise mathematical modeling of the system’s behavior as a function of a set of design variables to achieve the desired design. Despite the success of current tibial components of knee implants, the limited lifespan remains the main concern of these complex systems. The mismatch between the properties of engineered biomaterials and those of biological materials leads to inadequate bonding with bone and the stress-shielding effect. Exploiting a functionally graded material for the stem of the tibial component of knee implants is attractive because the properties can be designed to vary in a certain pattern, meeting the desired requirements at different regions of the knee joint system. Therefore, in this study, a Ti6Al4V/Hydroxyapatite functionally graded stem with a laminated structure underwent simulation-based multi-objective design optimization for a tibial component of the knee implant. Employing finite element analysis and response surface methodology, three material design variables (stem’s central diameter, gradient factor, and number of layers) were optimized for seven objective functions related to stress-shielding and micro-motion (including Maximum stress on the cancellous bone, maximum and mean stresses on predefined paths, the standard deviation of mean stress on paths, maximum and mean micro-motions at the bone-implant interface and the standard deviation of mean micro-motion). Then, the optimized functionally graded stem with 6 layers, a central diameter of 5.59 mm, and a gradient factor of 1.31, was compared with a Ti6Al4V stem for various responses. In stress analysis, the optimal stem demonstrated a 1.92% improvement in cancellous bone stress while it had no considerable influence on the maximum, mean, and standard deviation of stresses on paths. In micro-motion analysis, the maximum, mean, and standard deviation of mean micro-motion at the interface were enhanced by 24.31%, 39.53%, and 19.77%, respectively.
Suggested Citation
Mohaddeseh Fatemi & Zohreh Bahrami & Marjan Bahraminasab & Farideh Nabizadeh Chianeh, 2025.
"Optimizing functionally graded tibial components for total knee replacements: a finite element analysis and multi-objective optimization study,"
Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 28(13), pages 2064-2082, October.
Handle:
RePEc:taf:gcmbxx:v:28:y:2025:i:13:p:2064-2082
DOI: 10.1080/10255842.2024.2358358
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:28:y:2025:i:13:p:2064-2082. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.