Author
Abstract
Abnormal cardiac functionality produces irregular heart rhythms which are commonly known as arrhythmias. In some conditions, arrhythmias are treated as very dangerous which may lead to sudden cardiac arrest. The incidence and prevalence of cardiac anomalies seeks early detection of arrhythmias using automated classification techniques. In the past, numerous automated arrhythmia detection techniques have been developed that are based on electrocardiogram (ECG) signal analysis. Focusing on the prospective research in this field, this article reports a comprehensive review of existing techniques that are obtained using search engines such as IEEE explore, Google scholar and science direct. Based on the review, the existing techniques are broadly categorized into two types: machine-learning and deep-learning-based techniques. In this study, it is noticed that the performance of the machine-learning-based arrhythmia detection techniques depend on pre-processing of ECG signal, R-peaks detection, features extraction and classification tools while the deep-learning-based techniques do not require the features extraction step. Generally, the existing techniques utilize Massachusetts Institute of Technology-Beth Israel Hospital arrhythmia database to evaluate the classification performance. The classification performance of automated techniques also depends on ECG data used for training and testing of the classifier. It is expected that the performance should be evaluated using a variety of ECG signals including the cases of inter-patient and intra-patient paradigm. The existing techniques also require to deal with the class-imbalance problem. In addition to this, a specific partition-ratio between training and testing datasets should be maintained for fair comparison of performance of different techniques.
Suggested Citation
Chandan Kumar Jha, 2025.
"Automated cardiac arrhythmia detection techniques: a comprehensive review for prospective approach,"
Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 28(10), pages 1639-1654, July.
Handle:
RePEc:taf:gcmbxx:v:28:y:2025:i:10:p:1639-1654
DOI: 10.1080/10255842.2024.2332942
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:28:y:2025:i:10:p:1639-1654. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.