IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v25y2022i5p521-535.html
   My bibliography  Save this article

Auxeticity in biosystems: an exemplification of its effects on the mechanobiology of heterogeneous living cells

Author

Listed:
  • Sundeep Singh
  • Roderick Melnik

Abstract

Auxeticity (negative Poisson’s ratio) is the unique mechanical property found in an extensive variety of materials, such as metals, graphene, composites, polymers, foams, fibers, ceramics, zeolites, silicates and biological tissues. The enhanced mechanical features of the auxetic materials have motivated scientists to design, engineer and manufacture man-made auxetic materials to fully leverage their capabilities in different fields of research applications, including aeronautics, medical, protective equipments, smart sensors, filter cleaning, and so on. Atomic force microscopy (AFM) indentation is one of the most widely used methods for characterizing the mechanical properties and response of the living cells. In this contribution, we highlight main consequences of auxeticity for biosystems and provide a representative example to quantify the effect of nucleus auxeticity on the force response of the embryonic stem cells. A parametric study has been conducted on a heterogeneous stem cell to evaluate the effect of nucleus diameter, nucleus elasticity, indenter’s shape and location on the force-indentation curve. The developed model has also been validated with the recently reported experimental studies available in the literature. Our results suggest that the nucleus auxeticity plays a profound role in cell mechanics especially for large size nucleus. We also report the mechanical stresses induced within the hyperelastic cell model under different loading conditions that would be quite useful in decoding the interrelations between mechanical stimuli and cellular behavior of auxetic biosystems. Finally, current and potential areas of applications of our findings for regenerative therapies, tissue engineering, 3 D/4D bioprinting, and the development of meta-biomaterials are discussed.

Suggested Citation

  • Sundeep Singh & Roderick Melnik, 2022. "Auxeticity in biosystems: an exemplification of its effects on the mechanobiology of heterogeneous living cells," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 25(5), pages 521-535, April.
  • Handle: RePEc:taf:gcmbxx:v:25:y:2022:i:5:p:521-535
    DOI: 10.1080/10255842.2021.1965129
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2021.1965129
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2021.1965129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:25:y:2022:i:5:p:521-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.