IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v25y2022i4p387-411.html
   My bibliography  Save this article

A new variant of deep belief network assisted with optimal feature selection for heart disease diagnosis using IoT wearable medical devices

Author

Listed:
  • Fathima Aliyar Vellameeran
  • Thomas Brindha

Abstract

In this paper, the information related to heart disease using IoT wearable devices is collected from any benchmark site, which is publicly available. With the collected data, feature extraction process is performed initially, in which heart rate, zero crossing rate, and higher order statistical features like standard deviation, median, skewness, kurtosis, variance, mean, peak amplitude, and entropy are extracted. For acquiring most significant features, the optimal feature selection process is implemented. As a novel contribution, the feature selection process is done by the hybrid optimization algorithm called PS-GWO by integrating GWO and PSO. Next, the extracted features are subjected to a famous deep learning algorithm named modified DBN, in which the activation function and number of hidden neurons is optimized using the same developed hybrid algorithm to improve the heart diagnosis accuracy. From the analysis, for the test case 1, the accuracy of the developed PS-GWO-DBN is 60%, 52.5%, 35% and 35% increased than NN, KNN, SVM, and DBN. For test case 2, the accuracy of the proposed PS-GWO-DBN is 26%, 24%, 21.6% and 17% increased than NN, KNN, SVM, and DBN, respectively. The accuracy of the designed PS-GWO-DBN is 26% advanced than NN, 24% advanced than KNN, 21.6% advanced than SVM and 17% advanced than DBN for test case 3. Thus, the proposed heart disease prediction model using PS-GWO-DBN performs better than other classifiers.

Suggested Citation

  • Fathima Aliyar Vellameeran & Thomas Brindha, 2022. "A new variant of deep belief network assisted with optimal feature selection for heart disease diagnosis using IoT wearable medical devices," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 25(4), pages 387-411, March.
  • Handle: RePEc:taf:gcmbxx:v:25:y:2022:i:4:p:387-411
    DOI: 10.1080/10255842.2021.1955360
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2021.1955360
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2021.1955360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:25:y:2022:i:4:p:387-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.