IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v20y2017i7p701-713.html
   My bibliography  Save this article

The optimal density of cellular solids in axial tension

Author

Listed:
  • L. Angela Mihai
  • Khulud Alayyash
  • Hayley Wyatt

Abstract

For cellular bodies with uniform cell size, wall thickness, and shape, an important question is whether the same volume of material has the same effect when arranged as many small cells or as fewer large cells. To answer this question, for finite element models of periodic structures of Mooney-type material with different structural geometry and subject to large strain deformations, we identify a nonlinear elastic modulus as the ratio between the mean effective stress and the mean effective strain in the solid cell walls, and show that this modulus increases when the thickness of the walls increases, as well as when the number of cells increases while the volume of solid material remains fixed. Since, under the specified conditions, this nonlinear elastic modulus increases also as the corresponding mean stress increases, either the mean modulus or the mean stress can be employed as indicator when the optimum wall thickness or number of cells is sought.

Suggested Citation

  • L. Angela Mihai & Khulud Alayyash & Hayley Wyatt, 2017. "The optimal density of cellular solids in axial tension," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 20(7), pages 701-713, May.
  • Handle: RePEc:taf:gcmbxx:v:20:y:2017:i:7:p:701-713
    DOI: 10.1080/10255842.2017.1292352
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2017.1292352
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2017.1292352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huimin Zhang & Frédéric Landmann & Hala Zahreddine & David Rodriguez & Marc Koch & Michel Labouesse, 2011. "A tension-induced mechanotransduction pathway promotes epithelial morphogenesis," Nature, Nature, vol. 471(7336), pages 99-103, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alina C. Teuscher & Cyril Statzer & Anita Goyala & Seraina A. Domenig & Ingmar Schoen & Max Hess & Alexander M. Hofer & Andrea Fossati & Viola Vogel & Orcun Goksel & Ruedi Aebersold & Collin Y. Ewald, 2024. "Longevity interventions modulate mechanotransduction and extracellular matrix homeostasis in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Andrea Braeutigam & Ahmet Nihat Simsek & Gerhard Gompper & Benedikt Sabass, 2022. "Generic self-stabilization mechanism for biomolecular adhesions under load," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:20:y:2017:i:7:p:701-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.