IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v19y2016i6p628-638.html
   My bibliography  Save this article

Guidewire path determination for intravascular applications

Author

Listed:
  • Fernando M. Cardoso
  • Sergio S. Furuie

Abstract

Vascular diseases are among the major causes of death in developed countries and the treatment of those pathologies may require endovascular interventions, in which the physician utilizes guidewires and catheters through the vascular system to reach the injured vessel region. Several computational studies related to endovascular procedures are in constant development. Thus, predicting the guidewire path may be of great value for both physicians and researchers. However, attaining good accuracy and precision is still an important issue. We propose a method to simulate and predict the guidewire and catheter path inside a blood vessel based on equilibrium of a new set of forces, which leads, iteratively, to the minimum energy configuration. This technique was validated with phantoms using a ∅0.33 mm stainless steel guidewire and compared to other relevant methods in the literature. This method presented RMS error 0.30 mm and 0.97 mm, which represents less than 2% and 20% of the lumen diameter of the phantom, in 2D and 3D cases, respectively. The proposed technique presented better results than other methods from the literature, which were included in this work for comparison. Moreover, the algorithm presented low variation (\[\sigma = 0.03\hairsp mm\] σ=0.03 mm) due to the variation of the input parameters. Therefore, even for a wide range of different parameters configuration, similar results are presented for the proposed approach, which is an important feature and makes this technique easier to work with. Since this method is based on basic physics, it is simple, intuitive, easy to learn and easy to adapt.

Suggested Citation

  • Fernando M. Cardoso & Sergio S. Furuie, 2016. "Guidewire path determination for intravascular applications," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 19(6), pages 628-638, April.
  • Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:6:p:628-638
    DOI: 10.1080/10255842.2015.1055732
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2015.1055732
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2015.1055732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:19:y:2016:i:6:p:628-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.