IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v19y2016i11p1171-1180.html
   My bibliography  Save this article

Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model

Author

Listed:
  • Haofei Liu
  • Wei Sun

Abstract

In this study, we evaluated computational efficiency of finite element (FE) simulations when a numerical approximation method was used to obtain the tangent moduli. A fiber-reinforced hyperelastic material model for nearly incompressible soft tissues was implemented for 3D solid elements using both the approximation method and the closed-form analytical method, and validated by comparing the components of the tangent modulus tensor (also referred to as the material Jacobian) between the two methods. The computational efficiency of the approximation method was evaluated with different perturbation parameters and approximation schemes, and quantified by the number of iteration steps and CPU time required to complete these simulations. From the simulation results, it can be seen that the overall accuracy of the approximation method is improved by adopting the central difference approximation scheme compared to the forward Euler approximation scheme. For small-scale simulations with about 10,000 DOFs, the approximation schemes could reduce the CPU time substantially compared to the closed-form solution, due to the fact that fewer calculation steps are needed at each integration point. However, for a large-scale simulation with about 300,000 DOFs, the advantages of the approximation schemes diminish because the factorization of the stiffness matrix will dominate the solution time. Overall, as it is material model independent, the approximation method simplifies the FE implementation of a complex constitutive model with comparable accuracy and computational efficiency to the closed-form solution, which makes it attractive in FE simulations with complex material models.

Suggested Citation

  • Haofei Liu & Wei Sun, 2016. "Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 19(11), pages 1171-1180, August.
  • Handle: RePEc:taf:gcmbxx:v:19:y:2016:i:11:p:1171-1180
    DOI: 10.1080/10255842.2015.1118467
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2015.1118467
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2015.1118467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:19:y:2016:i:11:p:1171-1180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.