IDEAS home Printed from https://ideas.repec.org/a/taf/gcmbxx/v17y2014i5p507-515.html
   My bibliography  Save this article

Can one angle be simply subtracted from another to determine range of motion in three-dimensional motion analysis?

Author

Listed:
  • Benjamin Michaud
  • Monique I. Jackson
  • François Prince
  • Mickaël S. Begon

Abstract

To determine the range of motion of a joint between an initial orientation and a final orientation, it is convenient to subtract initial joint angles from final joint angles, a method referred to as the vectorial approach. However, for three-dimensional movements, the vectorial approach is not mathematically correct. To determine the joint range of motion, the rotation matrix between the two orientations should be calculated, and angles describing the range of motion should be extracted from this matrix, a method referred to as the matrical approach. As the matrical approach is less straightforward to implement, it is of interest to identify situations in which the vectorial approach leads to insubstantial errors. In this study, the vectorial approach was compared to the matrical approach, and theoretical justification was given for situations in which the vectorial approach can reasonably be used. The main findings are that the vectorial approach can be used if (1) the motion is planar (Woltring HJ. 1994. 3-D attitude representation of human joints: a standardization proposal. J Biomech 27(12): 1399–1414), (2) the angles between the final and the initial orientation are small (Woltring HJ. 1991. Representation and calculation of 3-D joint movement. Hum Mov Sci 10(5): 603–616), (3) the angles between the initial orientation of the distal segment and the proximal segment are small and finally (4) when only one large angle occurs between the initial orientation of the distal segment and the proximal segment and the angle sequence is chosen in such a way that this large angle occurs on the first axis of rotation. These findings provide specific criteria to consider when choosing the angle sequence to use for movement analysis.

Suggested Citation

  • Benjamin Michaud & Monique I. Jackson & François Prince & Mickaël S. Begon, 2014. "Can one angle be simply subtracted from another to determine range of motion in three-dimensional motion analysis?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(5), pages 507-515, April.
  • Handle: RePEc:taf:gcmbxx:v:17:y:2014:i:5:p:507-515
    DOI: 10.1080/10255842.2012.696104
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10255842.2012.696104
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10255842.2012.696104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gcmbxx:v:17:y:2014:i:5:p:507-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/gcmb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.